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The theoretical and experimental evaluation of a laboratory device for creating 
a controlled shear flow in a continuously stratified liquid is described. The shear 
is created by the movement of the end barriers of a rectangular channel. If these 
barriers are impulsively set into uniform shear motion, this motion propagates 
away in the form of a front of width 0 ((hln) (Nt)*) travelling with uniform speed 
Nhlnn, where N is the (constant) buoyancy frequency, t is time, n is the vertical 
modal number and his the channel depth. The shear produced has roughly twice 
the duration of that attainable using a tilting tube (Thorpe 1968) of similar 
dimensions. Shear enhancement is possible by introducing a properly designed 
flow contraction. If N(z)  is variable, the shear profile obtained is that appropriate 
to the lowest internal wave mode of infinite length. 

1. Introduction 
Not a great deal of experimental work has been done on the dynamics of stably 

stratified fluids in a vertical shear. This is possibly due to the difficulty of creating 
and sustaining the shear at  a controllable and measurable level for a period suffi- 
ciently long to establish approximately steady conditions. In  continuous flow 
devices such as those used by Moore & Long (1971) and Ode11 & Kovasznay 
(1971) the profiles of both density and shear are self controlled (i.e. by internal 
dynamics and not by the operator), with a resultant limitation in utility. Thorpe’s 
(1968) tilting tube apparatus has the appeal both of simplicity and capacity for 
allowing the motion to be described accurately, but operating times are limited 
by the arrival of ‘surge fronts’ which proceed from each end of the tube as soon 
as tilting is commenced, and travel towards the centre a t  about the speed of a 
solitary wave. 

Thermally stratified air has been used in other investigations such as those of 
Hewett, Fay & Hoult (1970) and Scotti & Corcos (1972). This provides the 
benefit of a continuously flowing system, but visualization and measurement are 
difficult to manage without disturbance, particularly a t  slow speeds; the higher 
kinematic viscosity of air limits the maximum Reynolds number attainable. 

The apparatus described here is intended to extend, using water as the working 
medium, the operational time for controlled shear beyond that possible for a 
given amount of water in Thorpe’s experiment. It does not permit the attainment 
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cn 
FIGURE 1. The apparatus. Notation is given in the text. 

of Richardson numbers as low as those Thorpe achieved, but for the purpose of 
studying lee waves and critical-layer absorption it has some advantages, and 
it is currently being used in the investigat’ion of these phenomena. 

The accompanying theoretical discussion is intended not only as an aid to 
understanding the working of the device, but to provide some insight into the 
properties of solitary wave fronts propagating and reflecting within continuously 
stratified media. 

2. Description of the apparatus 
Reference is made to figure 1. In  its present form the apparatus occupies a 

general-purpose ‘perspex’ sided tank (h) 5-49m long, 0.228m wide and 0-381 m 
deep, normally filled to a depth of 0-318 m with salt-stratified water. 

At a distance of 0.914m from one end a hinge (6) lies across the bottom of the 
tank, and attached to i t  is the lower edge of a paddle ( e )  which is long enough to 
occupy completely in any position the full width and depth of the tank. This 
paddle is sealed to the sides of the tank by a felt-coated rubber flap. Another 
flap seals the hinge, and there is thus formed a reasonably leak-free partition. 

A second similarly located paddle occupies the opposite end of the tank, and 
these paddles are permanently located parallel to one another by means of guide 
roller assemblies (d )  fitting over each plate and connected by steel cables (f). 

The guide roller assemblies are constrained t o  travel in a plane above the tank 
and parallel to the tank bottom, by opposing rollers which engage tracks (c) 
(actually sliding door tracks) attached to the top of the tank frame. Steel cables 
on each side of the guide roller assembly extend horizontally above the tank t o  
beyond the ends of the tank, where they pass over sheaves (b )  and (j) fixed on 
horizontal shafts mounted transverse to the tank axis. One of these shafts is the 
output from a gearbox (a) driven by an electronically controlled d.c. motor. 



Shear fronts und an experimental stratijied shear $ow 259 

Hence the paddles confine a rectangular parallelepiped of liquid whose base 
length and depth are constant, but within which the top plane may be sheared a t  
a constant speed relative to the bottom. 

The space confined a t  each of the outer ends of the tank is not constant in 
volume, but the net level of water contained there is maintained by connecting 
these spaces through a large bore (10 cm) pipe (k). 

In preparation, the inner space is filled with stratified salt solution through a 
bottom mushroom opening (n) which is subsequently closed. For linear strati- 
fications the two-tank method (Oster 1965) is used. Simultaneously the outer 
spaces are filled to the same level with fresh water, thus approximately equalizing 
the pressure across the plates and minimizing leakage of the stratified fluid. 
Once the tank is fdled a monomolecular layer of cetyl alcohol is deposited on the 
free surface to inhibit evaporation. With care during filling the stratified fluid will 
remain virtually uncontaminated by the fresh water for several hours. Leakage 
past the paddle seals is greatest with the paddles in the inclined position, so 
during filling the paddles are preset upright. 

In its present form the maximum shear velocity imposed on a free surface 
0.318m above the bottom is 5cm/s and accurate control is possible down to 
0.2 cm/s. 

As shown in 4 3 the maximum shearing rate within the fluid is 81. times the 
paddle shear. This shear could be further increased by the insertion of a contrac- 
tion (9)  occupying the central section of the tank. This comprised a triangularly 
faired barrier mounted against one side wall to reduce the effective width of the 
tank. The contractions used for the results given here provided a reduced width 
for a distance of 0.61 m. The depth of the tank was unaltered. 

3. The nature of the shear flow 
The motion of each paddle as described above may be regarded as a horizontal 

translation of its mid-point (taken here to be a t  the half-depth of the fluid), 
plus a rotation about this mid-point, with a constant vertical shear. The transla- 
tion results in a barotropic motion in the channel, set up by the propagation of 
small amplitude surface waves from the paddles when their motion commences. 
The oscillations associated with these waves decay rapidly and provided that the 
paddles move smoothly, the resultant barotropic motion is effectively steady. 

Considering now the baroclinic motion, we assume that the fluid is in uniform 
translation from (say) left to right and take an origin situated a t  the bottom of 
the tank, below the mid-point of the left-hand paddle. With x and z horizontal 
and vertical co-ordinates and t the time variable, the linearized equations of 
motion, in the Boussinesq approximation, are 

where u is the vector fluid velocity and (u, w) its horizontal and vertical com- 
ponents, p is the perturbation density about the equilibrium density po, p the 
perturbation pressure, 9 the gravitational acceleration and 4 = Vx is directed 

1 7 2  
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upwards. The suffixes x ,  z and t denote partial derivatives. With a stream func- 
tion $ defined by 

u = -+ 2 )  w = $x, (3.2) 
we obtain 

where 
(3.3) 

(3.4) 

We consider for the moment only one paddle, the end of a semi-infinite channel. 
The boundary conditions are 

I w = $kx = 0, 2 = 0,1 ,  

i r,,z - 4) , t > 0 ,  x = o ,  

0, t < 0, x = 0, 
u=-$ = (3.5) 

where the effect of the paddle has been replaced by a representative velocity 
distribution a t  x = 0 (the effect of paddle inclination will be discussed below). 
a is the (constant) paddle shear and length dimensions are scaled by the tank 
depth h. 

From (3.1), the initial conditions are 

$ = 0, V2$, = 0 as t + 0 .  

The z = 0 boundary condition may be written as 
m 

where 
- 4a/n2n2, n odd, 

n even. 

Taking the Laplace transform in the usual manner gives 

$(x,  2 ,  t) = -. estY(x,z ,s)ds ,  
2na rtiw B - i w  

where Y satisfies 

with e > 0 and p2 = 1+N2/s2 .  
Y2$ +p2Y,, = 0, 

Y = 0, = 0, 1 ; lr2 = -s-l~(z), = 0. 

These equations yield 

S 

We now consider the integral 

c f i m  este-nnx,pds 
I(nz,t) = -. 

2na ' 1  €-irn S 
where, if x = Vt, 

Assuming that t is large, the saddle points of the integrand are given by 

f(s) = s - n n V / ( ~  +iV2/s2)8-t-llogs. 

f'(S) = 0, 

(1 +s2/N2))(1- l/st) = nnV/N .  which yields 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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The front of the disturbance for mode n can be expected (from group-velocity 
considerations) to travel with the speed 

V E N/nn; (3.17) 

and i t  may readily be shown (by the saddle-point method or otherwise) that 

N 0 for V 9 N/nn, 

= 1 for V < N/nm. 
V =  ( N / n n ) ( l + y )  = P ( I + y ) ,  Hence we write 

(3.18) 

(3.19) 

assuming JyI 
approximation in (3.16) yields 

1 at  first. Formally this suggests that s2/N2 < 1, and using this 

(3.20) 

This cubic equation may be solved conventionally, and writing 

= 3*B/(2(Nt)*), (3.21) 

the three roots sl, s2 and s3 are given by 

} (3-22) 
Sl/N = Pl(2Nt)-+ [I+ O((Nt)3)1, 

Sz/N,s3/N = -&(2Nt)-*(/31 +i3*/32)[1+O((Nt)-~)], 

(3.23) 
p1 = [i + (1 -B3)*]* + [I - (1 - B3)*]*, 

p2 = [ 1 + ( 1 - ~ 3 ) + ] + - [ i -  ( 1  - ~ 3 ) + ] * .  

These are plotted in figure 2. Hence, provided that Nt  + 1 and B = O( I), sz/Nz 
is indeed small and the above approximations are valid. Only one saddle point 
has a positive real part, and this makes the greatest contribution to I, from which 
(Morse & Feshbach 1953, p. 438) 

I = etW/(2ntf(s1))4 (3.24) 

= exp ( - #BPl + $Pl)/[7W: + 2)I4 (3.25) 

with (3.21) and (3.22). The form of this equation as a function of B is plotted in 
figure 3. Il grows from very near zero to very near unity within the range 
- 1.2 < B < 1.0, and so the form of the travelling wave is almost completely 
described within the range of the above approximations. For the tank and strati- 
fication used Nt N 18 when the front for mode n = I arrives a t  the test section, 
which value is sufficiently large to justify the use of the above asymptotic analysis. 
The above structure is similar to that for a front in surface gravity waves, e.g. 
Jeffreys & Jeffreys (1962). 

As B becomes more negative the saddle points s2 and s3 approach the imaginary 
axis, and we may write I = Il + I, + 13, where 11, I .  and I3 represent the contribu- 
tions from the three saddle points. 

1 where 

When 1BI = O(l ) ,  

(3.26) 

The term I. + I3 represents oscillations which only become significant when the 
front of the motion has passed, and then decay with time according to (3.26). 

1 1 2  +&I = O(exP- [$(2Nt)'/3i $pi]), 
while for B < - 1, /I2+ 131 = O((x/Nt))/(Nt)*). 
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FIGURE' 2. Parameters PI and PB defining the roots of (3.20). 
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FIGURE 3. The profile of I defining the amplitude of horizontal shearing motion through 
the frontal region. For definitions see (3.13), (3.19) and (3.21). 

Under present experimental conditions the theoretical amplitude of these oscil- 
lations (associated with the n = 1 mode) a t  the mid-point of the tank was never 
greater than 4 % of the contribution from Il (the basic shear). 

To investigate the effect of initially angled paddles, we consider the geometry 
shown in figure 4(a)  with boundary conditions as given by (3.5) and (3.10), 
except that the left-hand boundary condition is applied a t  

2 = ($-z)cotO, (3.27) 
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rather than a t  x = 0. Taking s to be real, the solution to (3.10) under these 
conditions may be obtained from the above solution via afSchwarz-Christoffel 
transformation. If we write 

- I  ‘$ = x + i x ,  7 = X ’ + & Z ,  

where (x, x )  and (x’, x ’ )  are vertical and angled co-ordinates respectively (figure 4), 
then the appropriate transformation (Milne-Thomson 1960, p. 266) yields 

Ic (cosh nf + 1)” 
(3.28) 

= 1 +coshn< coshnc- I 

where k is a constant depending on 0.  Consider the case 0 = Q;.. Integrating 
(3.28) and matching at the corners gives k = I/n, and for x large 

’ 

x’ . x log($x 3:) , 
-+2 .x1=  -+iz+ 
P P 7T 

- exp [ - n(x/,u + ix)] + O(e-2w@p), (3.29) 

so that 

x . 2’ log (4 x 34) 7 x 33 +- exp-n(z‘/p+iz’) +O(e-2Rzlp). (3.30) 
8 

-+22 = -+iiz’- 
P P 7T 

For Re s > 0 i t  is readily shown that Rep  > 0 on the appropriate branch. 
Hence, apart from a constant factor affecting only the magnitude of each 

mode of the solution, the form of the wave (for the n = 1 mode in particular) 
for x large will be given by substitution of (3.30) in (3.12). An initially angled 
wave front becomes vertical as the wave propagates down the channel, in a 
distance comparable with the depth. 

The motion of a single paddle therefore results in a set of odd internal wave 
modes of zero frequency each travelling down the channel behind a front of width 
O(n-l(Nt)&), which travels at the appropriate group velocity, P = N/nn. The 
motion is essentially linear, since the advective and inertial terms are small, 
although the horizontal velocities behind the front may be large. 
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FIGURE 6 .  Frontal propagation represented by x, t diagram. =, positive primary-mode 
(n = 1) fronts originating at initial mean positions of the paddles; 1 I I I 1, reflected negative 
n = 1 front; I / / / / / ,  positive n = 3 fronts; region A ,  steady shear region; region B,  shearing 
motion region in tilting tube device. At point C the n = I mode has been annihilated by 
reflected negative fronts; the residual motion is barotropic flow plus n = 3 shear. 

In  the experimental channel, fronts for the first modes from each end meet near 
the centre and pass through one another leaving a superposition of sinusoidal 
shear flow profiles. The process is conveniently represented on an x, t diagram 
(figure 5). On this figure the origin of the front is located a t  the mid-point of the 
paddle, and the barotropic motion is then shown by a diagonal rightward shift 
of the frame relative to which the fronts move a t  rate +a, where a is paddle shear. 
The front region, over which the strength function I increases from 0.1 t o  0.9, 
is shown by horizontal hatching, and grows in width with time according to (3.19) 
and (3.2 1). On arrival at  the opposing paddle, each frontisreflectedandre-crosses 
the central region. If there is no attenuation in frontal strength, the prirnary- 
mode (n = 1) shear in that region is annihilated. However, coincident with the 
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intersection of the reflected primary mode the n = 3 mode (whose frontal region 
is marked by diagonal hatching) arrives, so that shortly after time C the residual 
motion in the central region comprises the barotropic component plus an n = 3 
shearing mode. 

Thus on figure 5 the primary region in which a usable steady experimental 
shear of primary mode only is sustained is region A. In  comparison, the accelera- 
ting shear region using the Thorpe technique with the same channel geometry 
would be approximately represented by region B. 

Also shown on figure 5 are lines giving the centre ofthe n = 5 mode front, which 
arrives well after the experimentally useful period ; thus approximately tri- 
angular shear is achieved only after a long time; unless the shearing rate is very 
low this time exceeds that for the paddles to reach their limit of travel. 

It should be noted that with this technique with constant N the Richardson 
numbers attainable are limited to Ri > $, since 

(dU/Wmsx = 8a/m, 
and we require that the paddle speed a t  the surface (relative to translating axes) 
be less than the frontal speed, which implies that 

&a < N / n ,  

so that Ri > (47~)~ N 0.38. 

However, the procedure is not restricted t o  constant stratification, and it is 
readily seen by analogy with the above theoretical argument that the shear pro- 
files following the fronts will be those appropriate to long internal gravity waves 
for that density gradient. By choosing the density gradients appropriately, low 
Richardson numbers may be realized more easily, and even Ri < achieved when 
the waves from each end superimpose. 

4. Experimental evaluation 
Figure 6 gives representative horizontal velocity profiles measured at  the 

mid-plane for a paddle shearing rate of 1.07 cm/s and depth of 32.1 cm, with a 
stratification N of 0*63rad/s over the central 80 % of the depth. Owing to dif- 
fusion and thermal convection the stratification weakened towards zero in the 
top 10 yo and the bottom 5 % of the depth. As shown in the appendix these de- 
fects were expected to exert a negligible influence on the shear flow structure. 
Velocities given in the figure are derived from photographic time exposures, 
about 5 sin duration, of neutrally buoyant polystyrene beads dispersed through- 
out the liquid. 

The figure shows that as time proceeds the initially barotropic motion is 
replaced by a growing half-sinusoidal (n = 1) shear, which then weakens con- 
currently with the arrival of n = 3 mode motion (q.v., figure 5). 

Figure 7 compares the results of a number of tests under similar conditions 
with paddle shears a varying over a range from 0.0079 to 0-119s-l. As for the 
previous figure N was 0-63s-I. The results are the amplitude of the primary, 
n = 1, mode expressed as a fraction of its theoretical maximum value 8+, 
given by (3.7) and (3.8). The theoretical time variation of this mode is shown by 
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FIGURE 6. Horizontal velocity profiles at  various times measured at  mid-plane; paddle 
shear a = 0.0333 s-1; N = 0.63 s-1, minimum Richardson number = 54. 0, t = 2.7 s; baro- 
t,ropic motion only; 0, t = 35.2s,  within the n = 1 shear front; n, t = 67*4s, fully de- 
veloped n = I shear; A, t = 107 s ,  attenuating n = 1 shear, plus n = 3 shear. 

P 
9 i 

1 1 1 1 1 1 1  

100 200 

t (4 
FIGURE 7. Shear amplitude w. time. Shears normalized by Sa/?r. -, theoretical variation. 
Experiments, N = 0.63s-l: 0, u = 0-0079s-l; 0. u = O-OISS-~; 0, a = 0.0333s-'; 0, 
a = 0.065 s-l; A, 01 = 0.1 19 s-l. Bars indicate the period over which measurements are 
averaged. 

the solid line, derived using (3.17), (3.19), (3.21), (3.23) and (3.25) and assuming 
the reflexion scheme of figure 5. 

The experimental results were derived from the difference between velocities 
a t  the top and the bottom of the channel with higher mode contributions sub- 
tracted. Direct shear measurement was susceptible to errors near the zero velo- 
city position owing to weak residual barotropic unsteadiness. On the figure the 
bars indicate the period over which the motion was averaged. The speed and 
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strength of the shear front is generally in good agreement with theory over the 
whole experimental period. One test, for unknown reasons, gave frontal strengths 
about 11 yo higher than the predicted maximum. 

5. The effect of a contraction 

as shown in figure 1, the vertical velocity may be written as 
If a vertical-sided two-dimensional contraction is introduced into the channel, 

w(x, y, x ,  t )  = E(x,  y, t )  sin nm, (5.1) 

on the assumption that the vertical structure of the motion is retained. From 
the equations of motion with the previously used approximations 

(5 .2)  V2WM -I- N 2 V L  w = 0,  

where v 2  = a2/ax2 + a2/ay2 + a 2 p x 2 ,  vfc = aZpx2 + a 2 p g .  

Then, substituting (5,1), 

( @ / a t 2  + N2) V g  w - n2+wtt = 0. (5.3) 
By inspection it can be seen that as N 2  4 a2/at2 this equation reduces to the wave 
equation in two dimensions: 

V&G - (n2+/N2) Wtt = 0, (5.4) 

in which disturbances are propagated at  a uniform speed P = N/nr  independent 
of horizontal direction. By applying (3.19) and (3.21) for flow prior to arrival a t  
the contraction it is found that N2/(a2/8t2) is &(Nt)2,  or for the first arrival of the 
front a t  the channel contraction, a value of about 100. Equation (5.4) indeed 
applies and the frontal behaviour can be likened to that of a diffuse sonic distur- 
bance. Angles of incidence and reflexion at the contraction walls are equal and the 
proportion of the incident front finding its way through the narrowed section 
can be estimated by geometry, as follows. 

Consider the arrival of a front comprising an individual shear mode n of 
magnitude G, as given by (3.8),  and a contraction of ratio (least/greatest width) 
W and angle 6' to the incident propagation direction. Part of the front travels 
directly into the narrow section without being deflected by the contraction walls. 
This part has unaffected amplitude Gn (denoted by F, here) and speed 

P ( = N/nn) .  

The remainder of the front is reflected by the contraction and channel walls. After 
each reflexion on the channel wall the angle of the propagation direction or ray 
of a given part of the front is increased by 23. If, after successive reflexions, this 
angle exceeds &r, that part of the front will not find its way into the narrow region 
and will ultimately be reflected back. Thus, for transmission the number of 
reflexion pairs K of a given ray is limited to 

K c rr/46. (5.5) 

I f  this condition is not satisfied for allincident rays, by continuity it can be shown 
that F', the magnitude of a shear front within the narrow channel produced by 
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a section of incident front which has experienced K reflexion pairs (whereKsatis- 
fies (5.5)),is 

2J8 + tan 8 II-1 
2J8 -tan 8 1- J = o  2 pJ, 

and, necessarily, 
K l U % X  

K=O 
C Fb: < GnlW, 

where K,,, is the largest value of K for rays satisfying (5 .5 ) .  There is a back- 
reflected front (or fronts) of total amplitude 

K- 

K=O 
W FK-C,. 

If (5.5) is satisfied for all incident rays, the magnitude of 3''' is given by (5.6) 
if 0 < K < Kmex; (5.7) is now an equality, and this determines FKmm. 

In  reality all of these frontal 'sections' are connected by diffraction regions, 
so that each is eroded in strength as time proceeds. In  addition each transmitted 
section I ! !  has a reduced net propagation velocity Pcos (2K8) down the narrow 
channel. As a result the transmitted frontal region becomes rapidly diffused, 
and the above description based on the geometry of rays should only be regarded 
as a useful guide. 

Note that, for 22.5" < 8 < 45", by the above equations 

(5 .8 )  i K < 1, Fo=Gn, 

2cn cos 28 if W-1 > 2 cos 28+ 1, 

GJW-G, if W-l c 2cos28-1- 1. 

An 'optimum ' contraction, one in which the minimum value of W is attained 

.El= { 
for a given 8 without back rejlexion, is determined by the condition 

w-1 = 2cos28.+ 1, < 8 in. 

Optimization is possible for lower values of W by admitting higher K sections 
of the incident front, but this requires 8 < 22-5', and results in a larger dispersion 
of the transmitted front. Thus for practical purposes little benefit is gained by 
having 6' < in- and W < 1/( 1 + 2%). 

To relate the foregoing to experiments only a crude comparison is justified, 
since in addition to the neglect of diffraction, there exist unpredictable effects 
arising from boundary-layer separation a t  the exit. Furthermore, within the 
narrowed channel, boundary-layer growth can be inconvenient; the 90 % 
velocity thickness of a wall layer originating a t  the paddle and growing from zero 
thickness in an impulsively started flow is about 1.16 (4vt)k (Rosenhead 1963, 
equation VII, 25), where v is the kinematic viscosity. 50 s after frontal passage 
boundary layers have penetrated more than 1.6 em on each side. 

In the experiments B 21 20' so for practical purposes (5.8) apply; the front was 
taken t o  be composed of a plane front of strength G, travelling at  speed P = N / T  
followed by a single front of strength Fl travelling a t  speed P cos (28). No allow- 
ance was made for boundary layers. 
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FIGURE 8. Shear amplitude (normalized by a) v8. time within a contraction 0.26 of channel 
width. -) theoretical amplitude with shear fronts represented by step ohenges. Points 
and broken lines: experiment N = 0-63s-4. X ,  a: = 0.0086s-'; 0, a: = 0 * 0 1 8 2 ~ - ~ ;  0 )  
a = 0.0342 s-'. 

Figure 8 shows experimental measurements of shear strength within a contrac- 
tion shaped a8 shown in figure 1, for which W = 0.26, 8 = 21.8". Using (6.8) we 
have F, = G, and PI = 1*45G,, with G, given by (3.8). The back-reflected front 
has strength - 0.36G,, i.e. it weakens the shear arriving at  the contraction. This 
latter front is reflected a t  the paddle, becoming a positive front, and transmits 
0.36 x 2-45@, into the contraction after re-arrival. In the figure, theoretical 
fronts are represented as steps of appropriate strength, normalized with respect 
t o  G,. 

Because of the repeated back reflexion the shear strengthis never steady for an 
appreciable length of time; the theoretical line (not taking diffraction into 
account) shows little resemblance to the experimental results, which have a 
double hump of shear strength with time. The disparity can be qualitatively 
explained by diffraction effects. These are revealed more clearly with an 'opti- 
mized' contraction, for which F,(B) = W-l G,, there being, then, according to 
(5.8) no back reflection. Figure 9 shows results of such il contraction for which 
W = 0-389 and 6 = 19.2'. The theoretical (undiffracted) front reaches a plateau, 
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FIGURE 9. Shear amplitude (normalized by a) us. time within an ‘ optimized’ contraction 
0.39 of channel width. -.-, theoretical amplitude with shear fronts represented by step 
changes; --0--,  experiment, N = 0.515s-l, tc = 0.0165s-l. 

and is then annihilated by the returning negative front, as is the case (figure 7) 
when the contraction is absent. Experimental shears also reach a plateau of useful 
duration corresponding well in strength with theoretical estimates. In support 
of predictions, there is no sign of repeated back reflexion. Effective frontal propa- 
gation lags in speed by 20 % or more behind that derived neglecting diffraction, 
and clearly for accurate prediction a proper calculation based upon (5.4) would 
have to be undertaken. 

6. Conclusion 
Baroclinic disturbances generated by a sudden change in velocity at  the end 

boundary of a layer of uniform stratification generate a set of modes n which pro- 
pagate a t  a speed P = Nhlnn, where N is the buoyancy frequency and h is the 
layer depth. The resultant changes in horizontal fluid motion are nearly mono- 
tonic and confined within a weakly dispersive ‘front’ of width O((h/n) (Nt ) f ) .  
The speed P is, to first order, independent of the modal strength and the propaga- 
tion and reflexion properties of these fronts are similar to those of infinitesimal 
sonic disturbances. Imperfections in stratification of thickness hi effect changes 
of only O((hi/h)3) in the transmission of the fronts and the profile and strength of 
the following shear. 

In  relation to the experimental shear flow device described, the theory may 
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be applied to predict accurately the duration and strength of shears produced. 
The shear strengthis twice the magnitude of that applied to the paddlegenerators, 
and can be sustained for a period nearly twice as long as that attainable in a tilting 
tube device of the same geometry. 

Since the upper surface is free there are also operational advantages over the 
tilting tube in accessibility to models placed in the channel, and in the ability 
to repeat experimental runs. The device is mechanically simpler than other shear 
flow apparatus. 

To streng$hen the shear, contractions may be inserted into the channel, but 
require suitable design to ensure that flow steadiness is not sacrificed. Because 
of refraction and repeated reflexion the shear front is strongly dispersed by 
contractions, and there exists a practical limit to the contraction ratio. 

Appendix. The effect of stratification imperfections 
Imperfections always arise in laboratory preparation of a stratified medium; 

thermal convection by evaporation or ambient temperature variation is effective 
in weakening density gradients near the top and bottom of a tank filled with 
stratified salt solution, but in addition molecular diffusion near these boundaries 
will produce weakened layers O ( ( ~ t ) h )  thick, K being the salt diffusion coefficient. 

To investigate their effects on the foregoing analysis, we consider a stratifica- 
tion N ( z )  as follows : 

(A21 

I 0, 0 < 2 < h,, 

0 I - h , < z < l ,  

$$$ + m2$ = 0, 

N =  N ,  h, < z < I-h,, 

- - 

i 
and write $ = $(z) e@-wt), Hence 

where m2(z) = k2(N2/w2 - 1) .  Thus 

(A31 i 
Asinmz+ Bcosmz, h, < z < 1 -7~,, 
cz, 0 < 2 < h,, 
D(1 -x ) ,  1 -h ,  < z < 1, 

where kh, and kh, are assumed small By matching @ and the pressure across 
interfaces h, and 1 - h, we find, after manipulation to eliminate C and D, 

A(mhl-tanmh,)-B(l+mh,tanmh,) = 0, (A4) 

(A 5)  

B 2: -+A(rnh,)3[1+O((mh,)2)]. (A6) 

tanm 2: Q[(mh1)3+(mh,)3], m 2: 7r+&r3(h:+h!). (A 7)  

C = A[1+0(7~hJ~] ,  D = 7~A[I+O(jlrh,)~]. (A 8) 

A[mh, + tanm(1- h,)] -t-B[l -mh, tanm(1- h,)] = 0. 

Regarding mh,, mh, < 1, and taking tan e N E + +e3, e << 1, 

Then substituting in (A 5), with the same approximation, we obtain 

The boundary conditions then give 
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The change in modal structure in the stratified region is thus of third order in hl 
and h, . 

The effects of the change in density structure on the amplitudes of the modes 
may be examined by evaluating their coefficients in a Fourier expansion (the 
modes are orthogonal to O(h;, it:)), and this yields, after some algebra, that the 
amplitudes are only altered by a term which is again O(h7, hz). 
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